Math 250A Lecture 5 Notes

Daniel Raban

September 7, 2017

1 Symmetric Groups

1.1 Basic definitions

Definition 1.1. The symmetric group S_n is the group of all permutations of the *n* points $\{1, \ldots, n\}$.

 $|S_n| = n!$ because there are *n* choices for the image of 1, then n - 1 choices for the image of 2, etc. We denote elements using cycle notation: $(a \ b \ c \ d)$ is the function taking $a \mapsto b \mapsto c \mapsto d$.

Definition 1.2. A transposition is a permutation that exchanges 2 elements and fixes all others.

Proposition 1.1. S_n is generated by the transpositions $(1 2), (2 3), (3 4), \ldots, (n - 1 n)$.

Proof. This is "bubblesort," the "2nd worst" sorting algorithm.¹ In the worst case, bubblesort takes n(n-1)/2 exchanges to sort a list of n elements.

1.2 The alternating group

Look at S_n acting on variables x_1, \ldots, x_n . It also acts on $\mathbb{C}[x_1, \ldots, x_n]$, polynomials in n variables. Look at the discriminant,

$$\Delta = (x_1 - x_2)(x_2 - x_3) \cdots (x_1 - x_3) \cdots (x_{n-1-x_n}) = \prod_{i < j} (x_i - x_j).$$

Any $\sigma \in S_n$ maps Δ to Δ or $-\Delta$, so there exists some homomorphism $\varepsilon : S_n \to \{\pm 1\}$.

Definition 1.3. The alternating group A_n is the subgroup of elements $\sigma \in S_n$ such that $\sigma(\Delta) = \Delta$; this is the kernel of ε .

So A_n is normall in S_n , of order n!/2.

¹The "worst" algorithm is called bogosort.

1.3 S_n , A_n , and platonic solids

Symmetries of platonic solids are very closely related to the groups S_n and A_n .

The rotations and reflections of a tetrahedron is S_4 , acting on the vertices; the rotations are then A_4 . The rotations of a cube or an octahedron are given by S_4 acting on the permutations of the diagonals; then the rotations and reflections are given by $S_4 \times \mathbb{Z}/2\mathbb{Z}$. The number of rotations of a dodecahedron or an icosahedron is given by permutations of the five inscribed "inner cubes," which gives a homomorphism of rotations to S_5 , and this group is A_5 ; then the rotations and reflections are given by $A_5 \times \mathbb{Z}/2\mathbb{Z}$.

We summarize the results in this table:

platonic solid	number of rotations	number of rotations and reflections
tetrahedron	$12 (A_4)$	$24 (S_4)$
cube/octahedron	$24 (S_4)$	$48 \ (S_4 \times \mathbb{Z}/2\mathbb{Z})$
dodecahedron/icosahedron	$60 (A_5)$	120 $(A_5 \times \mathbb{Z}/2\mathbb{Z} \not\cong S_5)$

These groups are "spherical reflection groups."

1.4 Conjugacy classes of S_n

We can write any element of S_n as a product of disjoint cycles.

Definition 1.4. The cycle shape is the sizes of the cycles with multiplicities.

Example 1.1. The permutation (124)(578)(69)(10)(3) has cycle shape $3^2, 2, 1^2$.

Two elements are conjugate if they have the same cycle shape. Given a, b, with the same cycle shape, how can we find g with $a = gbg^{-1}$? Write out the two permutations in cycle notation and pair off elements:

```
(1\ 2\ 4)(5\ 7\ 8)(6\ 9)(10)(3)
\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow
(2\ 4\ 5)(6\ 7\ 8)(1\ 3)(9)(10)
```

This gives us $g = (1 \ 6 \ 5 \ 4 \ 2 \ 1)(3 \ 9 \ 10)(7)(8).$

Example 1.2. How many conjugacy classes are the of S_4 ? This is the number of cycle shapes, which is also the number of partitions of 4. Denoting C_{σ} as the conjugacy class (viewing S_4 as the rotations of a cube) and G_{σ} as the stabilizer under the action of conjugation (also is the centralizer).

partition	cycle shape	C_{σ}	$ G_{\sigma} $	$ C_{\sigma} = G / G_{\sigma} $
1 + 1 + 1 + 1	1^{4}	identity	24	1
2+1+1	$2, 1^2$	rotation by π	4	6
3 + 1	3, 1	rotation by $2\pi/3$	3	8
2+2	2^{2}	rotation by π	8	3
4	4	rotation by $\pi/2$	4	6

If σ has cycle shape $1^{n_1}2^{n_2}3^{n_3}\cdots$, then the number of elements in the centralizer is $1^{n_1}n_1! \cdot 2^{n_2}n_2!\cdots$.

1.5 Normal subgroups of S_n

What are the normal subgroups of S_n ? We already know of $\{e\}$, A_n , and S_n . Viewing S_4 as the rotations of a cube, we have that S_4 acts on 3 lines by permuting them; so we have a homomorphism $S_4 \to S_3$, where the kernel is a normal subgroup of order 4 (the identity + 3 rotations by π). Following this pattern, we have homomorphisms S_2 onto S_1 , S_3 onto S_2 , and S_4 onto S_3 . However, the pattern breaks because there is no homomorphism from S_5 onto S_4 ; S_5 has a simple subgroup A_5 , the rotations of an icosahedron. If N is any normal subgroup of S_5 , $N \cap A_5$ is normal in A_5 , so it is 1 or 5. So the only normal subgroups of S_5 are $\{e\}$, A_5 , and S_5 .

Theorem 1.1. A_n is simple for $n \ge 5$.

Proof. We sketch a proof using induction on n. Suppose N is normal in S_n . Pick an element $g \in N$ with $g \neq e$. Find h so that $ghg^{-1}h^{-1}$ fixes the point 1 (exercise). So $ghg^{-1}h^{-1} = g(hg^{-1}h^{-1})$ is also in N, which makes N have nontrivial intersection with S_{n-1} (things fixing 1). So $N \cap S_{n-1} = A_{n-1}$ or S_{n-1} . So N contains all elements of A_n fixing 1. Similarly, it contains all elements fixing i for any i. These generate A_n (also an exercise).

Example 1.3. There are three groups of order 120 containing A_5 and $\mathbb{Z}/2\mathbb{Z}$ as composition factors.

- 1. $A_5 \times \mathbb{Z}/2\mathbb{Z}$
- 2. S_5 , which has a subgroup A_5 and the quotient group $\mathbb{Z}/2\mathbb{Z}$
- 3. Binary icosahedral group², which has a quotient group A_5 and a subgroup $\mathbb{Z}/2\mathbb{Z}$

²Let G be this group. Then S^3/G , the cosets of G in S^3 (not a group), has the same homology as S^3 but is not homeomorphic to S_3 .

1.6 Outer automorphisms of S_n

Conjugation is an automorphism of a group G, and we get an exact sequence

 $1 \to Z(G) \to$ conjugations $\to Aut(G) \to$ outer automorphisms $\to 1$.

For $n \ge 3$ with $n \ne 6$, $\operatorname{Aut}(S_n) \cong S_n$, and all these automorphisms are inner automorphisms.

Let's find a non-inner automorphism of S_6 . Start with S_5 . This has a subgroup of order 20. S_5 acts on $0, 1, 2, 3, 4 \in \mathbb{F}_5$, and has the following subgroup: all permutations of the form $x \mapsto ax + b$ for $a, b \in \mathbb{F}_5$. So S_5 has a subgroup of index 6, so it acts transitively on 6 points, giving us a homomorphism from $S_5 \to S_6$ which is different from the usual such homomorphisms that fix some element (which are not transitive). S_6 has 12 subgroups $\cong S_5$, not 6, as we might expect.

Any subgroup of index n in G products a homomorphism from $G \to S_n$, where G acts transitively on n points, so any subgroup of index 6 in S_6 gives a homomorphism from $S_6 \to S_6$. Pick one of the "funny" homomorphisms $S_5 \to S_6$ to get a homomorphism from $S_6 \to S_6$. Check that this is not an inner automorphism (exercise).