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1 Symmetric Groups

1.1 Basic definitions

Definition 1.1. The symmetric group Sn is the group of all permutations of the n points
{1, . . . , n}.

|Sn| = n! because there are n choices for the image of 1, then n − 1 choices for the
image of 2, etc. We denote elements using cycle notation: (a b c d) is the function taking
a 7→ b 7→ c 7→ d.

Definition 1.2. A transposition is a permutation that exchanges 2 elements and fixes all
others.

Proposition 1.1. Sn is generated by the transpositions (1 2), (2 3), (3 4), . . . , (n− 1 n).

Proof. This is “bubblesort,” the “2nd worst” sorting algorithm.1 In the worst case, bub-
blesort takes n(n− 1)/2 exchanges to sort a list of n elements.

1.2 The alternating group

Look at Sn acting on variables x1, . . . , xn. It also acts on C[x1, . . . , xn], polynomials in n
variables. Look at the discriminant,

∆ = (x1 − x2)(x2 − x3) · · · (x1 − x3) · · · (xn−1−xn) =
∏
i<j

(xi − xj).

Any σ ∈ Sn maps ∆ to ∆ or −∆, so there exists some homomorphism ε : Sn → {±1}.

Definition 1.3. The alternating group An is the subgroup of elements σ ∈ Sn such that
σ(∆) = ∆); this is the kernel of ε.

So An is normall in Sn, of order n!/2.

1The “worst” algorithm is called bogosort.
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1.3 Sn, An, and platonic solids

Symmetries of platonic solids are very closely related to the groups Sn and An.
The rotations and reflections of a tetrahedron is S4, acting on the vertices; the rotations

are then A4. The rotations of a cube or an octahedron are given by S4 acting on the
permutations of the diagonals; then the rotations and reflections are given by S4 × Z/2Z.
The number of rotations of a dodecahedron or an icosahedron is given by permutations of
the five inscribed “inner cubes,” which gives a homomorphism of rotations to S5, and this
group is A5; then the rotations and reflections are given by A5 × Z/2Z.

We summarize the results in this table:

platonic solid number of rotations number of rotations and reflections

tetrahedron 12 (A4) 24 (S4)
cube/octahedron 24 (S4) 48 (S4 × Z/2Z)

dodecahedron/icosahedron 60 (A5) 120 (A5 × Z/2Z 6∼= S5)

These groups are “spherical reflection groups.”

1.4 Conjugacy classes of Sn

We can write any element of Sn as a product of disjoint cycles.

Definition 1.4. The cycle shape is the sizes of the cycles with multiplicities.

Example 1.1. The permutation (1 2 4)(5 7 8)(6 9)(10)(3) has cycle shape 32, 2, 12.

Two elements are conjugate if they have the same cycle shape. Given a, b, with the
same cycle shape, how can we find g with a = gbg−1? Write out the two permutations in
cycle notation and pair off elements:

(1 2 4)(5 7 8)(6 9)(10)(3)

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

(2 4 5)(6 7 8)(1 3)(9)(10)

This gives us g = (1 6 5 4 2 1)(3 9 10)(7)(8).

Example 1.2. How many conjugacy classes are the of S4? This is the number of cy-
cle shapes, which is also the number of partitions of 4. Denoting Cσ as the conjugacy
class (viewing S4 as the rotations of a cube) and Gσ as the stabilizer under the action of
conjugation (also is the centralizer).
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partition cycle shape Cσ |Gσ| |Cσ| = |G| / |Gσ|
1+1+1+1 14 identity 24 1

2+1+1 2, 12 rotation by π 4 6
3+1 3, 1 rotation by 2π/3 3 8
2+2 22 rotation by π 8 3

4 4 rotation by π/2 4 6

If σ has cycle shape 1n12n23n3 · · · , then the number of elements in the centralizer is
1n1n1! · 2n2n2! · · · .

1.5 Normal subgroups of Sn

What are the normal subgroups of Sn? We already know of {e}, An, and Sn. Viewing S4
as the rotations of a cube, we have that S4 acts on 3 lines by permuting them; so we have a
homomorphism S4 → S3, where the kernel is a normal subgroup of order 4 (the identity +
3 rotations by π). Following this pattern, we have homomorphisms S2 onto S1, S3 onto S2,
and S4 onto S3. However, the pattern breaks because there is no homomorphism from S5
onto S4; S5 has a simple subgroup A5, the rotations of an icosahedron. If N is any normal
subgroup of S5, N ∩ A5 is normal in A5, so it is 1 or 5. So the only normal subgroups of
S5 are {e}, A5, and S5.

Theorem 1.1. An is simple for n ≥ 5.

Proof. We sketch a proof using induction on n. Suppose N is normal in Sn. Pick an
element g ∈ N with g 6= e. Find h so that ghg−1h−1 fixes the point 1 (exercise). So
ghg−1h−1 = g(hg−1h−1) is also in N , which makes N have nontrivial intersection with
Sn−1 (things fixing 1). So N ∩ Sn−1 = An−1 or Sn−1. So N contains all elements of An
fixing 1. Similarly, it contains all elements fixing i for any i. These generate An (also an
exercise).

Example 1.3. There are three groups of order 120 containing A5 and Z/2Z as composition
factors.

1. A5 × Z/2Z

2. S5, which has a subgroup A5 and the quotient group Z/2Z

3. Binary icosahedral group2, which has a quotient group A5 and a subgroup Z/2Z
2Let G be this group. Then S3/G, the cosets of G in S3 (not a group), has the same homology as S3

but is not homeomorphic to S3.
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1.6 Outer automorphisms of Sn

Conjugation is an automorphism of a group G, and we get an exact sequence

1→ Z(G)→ conjugations→ Aut(G)→ outer automorphisms→ 1.

For n ≥ 3 with n 6= 6, Aut(Sn) ∼= Sn, and all these automorphisms are inner automor-
phisms.

Let’s find a non-inner automorphism of S6. Start with S5. This has a subgroup of order
20. S5 acts on 0, 1, 2, 3, 4 ∈ F5, and has the following subgroup: all permutations of the
form x 7→ ax + b for a, b ∈ F5. So S5 has a subgroup of index 6, so it acts transitively on
6 points, giving us a homomorphism from S5 → S6 which is different from the usual such
homomorphisms that fix some element (which are not transitive). S6 has 12 subgroups
∼= S5, not 6, as we might expect.

Any subgroup of index n in G products a homomorphism from G→ Sn, where G acts
transitively on n points, so any subgroup of index 6 in S6 gives a homomorphism from
S6 → S6. Pick one of the “funny” homomorphisms S5 → S6 to get a homomorphism from
S6 → S6. Check that this is not an inner automorphism (exercise).
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